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Abstract
Aim—To contribute to the debate about
whether growth hormone (GH) and
insulin-like growth factor 1 (IGF-1) act
independently on the growth process.
Methods—To describe growth in human
and animal models of isolated IGF-1 defi-
ciency (IGHD), such as in Laron syn-
drome (LS; primary IGF-1 deficiency and
GH resistance) and IGF-1 gene or GH
receptor gene knockout (KO) mice.
Results—Since the description of LS in
1966, 51 patients were followed, many
since infancy. Newborns with LS are
shorter (42–47 cm) than healthy babies
(49–52 cm), suggesting that IGF-1 has
some influence on intrauterine growth.
Newborn mice with IGF-1 gene KO are
30% smaller. The postnatal growth rate of
patients with LS is very slow, the distance
from the lowest normal centile increasing
progressively. If untreated, the final height
is 100–136 cm for female and 109–138 cm
for male patients. They have acromicia,
organomicria including the brain, heart,
gonads, genitalia, and retardation of skel-
etal maturation. The availability of bio-
synthetic IGF-1 since 1988 has enabled it
to be administered to children with LS. It
accelerated linear growth rates to 8–9 cm
in the first year of treatment, compared
with 10–12 cm/year during GH treatment
of IGHD. The growth rate in following
years was 5–6.5 cm/year.
Conclusion—IGF-1 is an important
growth hormone, mediating the protein
anabolic and linear growth promoting
eVect of pituitary GH. It has a GH

independent growth stimulating eVect,
which with respect to cartilage cells is
possibly optimised by the synergistic ac-
tion with GH.
(J Clin Pathol: Mol Pathol 2001;54:311–316)
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In recent years, new technologies have enabled
many advances in the so called growth
hormone (GH) axis (fig 1). Thus, it has been
found that GH secretion from the anterior
pituitary is regulated not only by GH releasing
hormone (GHRH) and somatostatin (GH
secretion inhibiting hormone),1 but also by
other hypothalamic peptides called GH secre-
tagogues,2 which seem to act in synergism with
GHRH3 by inhibiting somatostatin.4 One of
these has been cloned and named Ghrelin.5

The interplay between GHRH and somatosta-
tin induces a pulsatile GH secretion,6 which is
highest during puberty. GH induces the
generation of insulin-like growth factor 1
(IGF-1, also called somatomedin 1) in the liver
and regulates the paracrine production of
IGF-1 in many other tissues.7

IGF-1
IGF-1 and IGF-2 were identified in 1957 by
Salmon and Daughaday8 and designated “sul-
phation factor” by their ability to stimulate
35-sulphate incorporation into rat cartilage.
Froesch et al described the non-suppressible
insulin-like activity (NSILA) of two soluble
serum components (NSILA I and II).9 In
1972, the labels sulphation factor and NSILA
were replaced by the term “somatomedin”,
denoting a substance under control and medi-
ating the eVects of GH.10 In 1976, Rinderk-
necht and Humbel11 isolated two active sub-
stances from human serum, which owing to
their structural resemblance to proinsulin were
renamed “insulin-like growth factor 1 and 2”
(IGF-1 and 2). IGF-1 is the mediator of the
anabolic and mitogenic activity of GH.12

CHEMICAL STRUCTURE

The IGFs are members of a family of insulin
related peptides that include relaxin and
several peptides isolated from lower inverte-
brates.13 IGF-1 is a small peptide consisting of
70 amino acids with a molecular weight of
7649 Da.14 Similar to insulin, IGF-1 has an A
and B chain connected by disulphide bonds.
The C peptide region has 12 amino acids. The
structural similarity to insulin explains the
ability of IGF-1 to bind (with low aYnity) to
the insulin receptor.

Figure 1 The cascade of the growth hormone axis. CNS, central nervous system; GH,
growth hormone; GHBP, GH binding protein; GH-S, GH secretagogues; IGF-1,
insulin-like growth factor 1; IGFBPs, IGF binding proteins; +, stimulation; –, inhibition.
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THE IGF-1 GENE

The IGF-1 gene is on the long arm of chromo-
some 12q23–23.15 16 The human IGF-1 gene
consists of six exons, including two leader
exons, and has two promoters.17

IGF binding proteins (IGFBPs)
In the plasma, 99% of IGFs are complexed to
a family of binding proteins, which modulate
the availability of free IGF-1 to the tissues.
There are six binding proteins.18 In humans,
almost 80% of circulating IGF-1 is carried by
IGFBP-3, a ternary complex consisting of one
molecule of IGF-1, one molecule of IGFBP-3,
and one molecule of an 88 kDa protein named
acid labile subunit.19 IGFBP-1 is regulated by
insulin and IGF-120; IGFBP-3 is regulated
mainly by GH but also to some degree by
IGF-1.21

The IGF-1 receptor
The human IGF-1 receptor (type 1 receptor) is
the product of a single copy gene spanning over
100 kb of genomic DNA at the end of the long
arm of chromosome 15q25–26.22 The gene
contains 21 exons (fig 2) and its organisation
resembles that of the structurally related insu-
lin receptor (fig 3).23 The type 1 IGF receptor
gene is expressed by almost all tissues and cell
types during embryogenesis.24 In the liver, the
organ with the highest IGF-1 ligand expres-
sion, IGF-1 receptor mRNA is almost undetec-
table, possibly because of the “downregula-
tion” of the receptor by the local production of
IGF-1. The type 1 IGF receptor is a heterote-
tramer composed of two extracellular spanning

á subunits and transmembrane â subunits. The
á subunits have binding sites for IGF-1 and are
linked by disulphide bonds (fig 3). The â subu-
nit has a short extracellular domain, a trans-
membrane domain, and an intracellular do-
main. The intracellular part contains a tyrosine
kinase domain, which constitutes the signal
transduction mechanism. Similar to the insulin
receptor, the IGF-1 receptor undergoes ligand
induced autophosphorylation.25 The activated
IGF-1 receptor is capable of phosphorylating
other tyrosine containing substrates, such as
insulin receptor substrate 1 (IRS-1), and
continues a cascade of enzyme activations via
phosphatidylinositol-3 kinase (PI3-kinase),
Grb2 (growth factor receptor bound protein
2), Syp (a phophotyrosine phosphatase), Nck
(an oncogenic protein), and Shc (src homology
domain protein), which associated to Grb2,
activates Raf, leading to a cascade of protein
kinases including Raf, mitogen activated pro-
tein (MAP) kinase, 5 G kinase, and others.26

Physiology
IGF-1 is secreted by many tissues and the
secretory site seems to determine its actions.
Most IGF-1 is secreted by the liver and is
transported to other tissues, acting as an endo-
crine hormone.27 IGF-1 is also secreted by
other tissues,28 including cartilagenous cells,
and acts locally as a paracrine hormone (fig
4).29 It is also assumed that IGF-1 can act in an
autocrine manner as an oncogene.30 The role of
IGF-1 in the metabolism of many tissues
including growth has been reviewed re-
cently.31 32

The following is an analysis of whether
IGF-1, the anabolic eVector hormone of pitui-
tary GH, is the “real growth hormone”.

Is IGF-1 “a” or “the” growth hormone?
The discussion on the role of IGF-1 in body
growth will be based on growth in states of
IGF-1 deficiency and the eVects of exogenous
IGF-1 administration. Experiments in nature
(gene deletion or gene mutations) or experi-
mental models in animals, such as gene knock-
outs, help us in this endeavour. In 1966 and
1968,33 34 we described a new type of dwarfism
indistinguishable from genetic isolated GH
deficiency (IGHD), but characterised by high
serum GH values. Subsequent studies revealed
that these patients cannot generate IGF-1.35

This syndrome of GH resistance (insensitiv-
ity) was named by Elders et al as Laron dwarf-
ism,36 a name subsequently changed to Laron
syndrome (LS).37 Molecular studies revealed
that the causes of GH resistance are deletions38

or mutations39 in the GH receptor gene, result-
ing in the failure to generate IGF-1 and a
reduction in the synthesis of several other sub-
stances, including IGFBP-3. This unique
model in humans has enabled the study of the
diVerential eVects of GH and IGF-1.

Growth and development in congenital
(primary) IGF-1 deficiency (LS)
Our group has studied and followed 52
patients (many since birth) throughout child-
hood, puberty, and into adulthood. We found

Figure 2 Type 1 insulin-like growth factor receptor gene and mRNA. Reproduced with
permission from Werner.22
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that newborns with LS are slightly shorter at
birth (42–47 cm) than healthy babies (49–
52 cm), suggesting that IGF-1 has some influ-
ence on intrauterine linear growth.40 This fact
is enforced by the findings that already at birth,
and throughout childhood, skeletal maturation
is retarded, as is organ growth.41 These growth
abnormalities include a small brain (as ex-
pressed by head circumference),41 a small heart
(cardiomicria),42 and acromicria (small chin,

resulting from underdevelopment of the facial
bones, small hands, and small feet).33 34 IGF-1
deficiency also causes underdevelopment and
weakness of the muscular system,43 and impairs
and weakens hair44 and nail growth. These
findings are identical to those described in
IGHD.45 IGF-1 deficiency throughout child-
hood causes dwarfism (final height if un-
treated, 100–135 cm in female and 110–
142 cm in male patients),40 41 with an
abnormally high upper to lower body ratio.41

One patient reported from the UK was found
to have a deletion of exons 4 and 5 of the IGF-1
gene and he too was found to have severe
growth retardation.46

Impaired growth and skeletal development
in the absence of IGF-1 were confirmed in
mice using knockout (KO) of the IGF-1 gene
or GH receptor gene.47–49

Knockout of the IGF-1 gene or the IGF-1
receptor gene reduces the size of mice by
40–45%.49 Lack of the IGF-1 receptor is lethal
at birth in mice owing to respiratory failure
caused by impaired development of the dia-
phragm and intercostal muscles.49 In another
model, the mice remained alive and their post-
natal growth was reduced.50

In conclusion, findings in humans and in
animals show that IGF-1 deficiencies causes
pronounced growth retardation in the presence
of increased GH values.

The following is a summary of the results of
the growth stimulating eVects of the adminis-
tration of exogenous IGF-1 to children and
experimental data.

Growth promoting eVects of IGF-1
The first demonstration that exogenous IGF-1
stimulates growth was the administration of
purified hormone to hypophysectomised
rats.51 52 After the biosynthesis of IGF-1 identi-
cal to the native hormone,53 trials of its use in

Figure 4 Paracrine insulin-like growth factor 1 (IGF-1) secretion and endocrine IGF-1
targets in the various zones of the epiphyseal cartilage growth zone.
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humans were begun; first in adults54 and then
in children.55 56 Our group was the first to
introduce long term administration of biosyn-
thetic IGF-1 to children with primary IGF-1
deficiency—primary GH insensitivity or LS.57

The finding that daily IGF-1 administration
raises serum alkaline phosphatose, which is an
indicator of osteoblastic activity, and serum
procollagen,57 58 in addition to IGFBP-3,21 led
to long term treatment. Treatment of patients
with LS was also initiated in other parts of the
world.59–62 The diVerence between us and the
other groups was that we used a once daily
dose, whereas the others administered IGF-1
twice daily.60 Table 1 compares the linear
growth response of children with LS treated by
four diVerent groups. It can be seen that before
treatment the mean growth velocity was
3–4.7 cm/year and that this increased after
IGF-1 treatment to 8.2–9.1 cm/year, followed
by a lower velocity of 5.5–6.4 cm/year in the
next two years. (In GH treatment the highest
growth velocity registered is also in the first
year of treatment.) Figure 5 illustrates the
growth response to IGF-1 in eight children
during the first years of treatment.65 Ranke and
colleagues60 reported that two of their patients
had reached the third centile (Tanner), as did
the patient of Krzisnik and Battelino66; how-
ever, most patients did not reach a normal final
height. The reasons may be late initiation of
treatment, irregular IGF-1 administration,
underdosage, etc. Ranke et al conclude that
long term treatment of patients with LS
promoted growth and, if treatment is started at
an early age, there is a considerable potential
for achieving height normalisation.60 Because
no patient in our group was treated since early
infancy to final height we cannot confirm this
opinion.

When the growth response to GH treatment
in infants with IGHD was compared with that
of IGF-1 in infants with LS we found that the
infants with IGHD responded faster and better
than those with LS.67 However, the small
number of patients and the diVerences in
growth retardation between the two groups
makes it diYcult to reach a conclusion.

Both hormones stimulated linear growth,
but GH seemed more eVective than IGF-1.
One cause may be the greater growth deficit of
the infants with LS than those with IGHD, an
insuYcient dose of IGF-1, or that there is a

need for some GH to provide an adequate stem
cell population of prechondrocytes to enable
full expression of the growth promoting action
of IGF-1, as postulated by Green and col-
leagues68 and Ohlson et al.69 All the above find-
ings based on a few clinical studies with small
groups of patients and a few experimental
studies remain at present controversial. The
crucial question is whether there are any, and if
so, whether there are suYcient IGF-1 receptors
in the “progenitor cartilage zone” of the
epiphyseal cartilage (fig 4) to respond to endo-
crine and exogenous IGF-1. Using the man-
dibular condyle of 2 day old ICR mice, Maor et
al showed that these condyles, which resemble
the epiphyseal plates of the long bones, contain
IGF-1 and high aYnity IGF-1 receptors also in
the chondroprogenitor cell layers, which ena-
bles them to respond to IGF-1 in vitro.70

Sims et al,71 using mice with GH receptor
KO showed that IGF-1 administration stimu-
lates the growth (width) of the tibial growth
plate and that IGF-1 has a GH independent
eVect on the growth plate. These findings are
similar to those found when treating hypophy-
sectomised rats with IGF-1.51 52

In conclusion, IGF-1 is an important growth
hormone, mediating the anabolic and linear
growth promoting eVect of pituitary GH
protein. It has a GH independent growth
stimulating eVect, which with respect to
cartilage cells is possibly optimised by the syn-
ergistic action with GH.
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